SHALE PETROPHYSICAL CHARACTERISTICS

Kashy Aminian
Petroleum & Natural Gas Engineering
West Virginia University

INFUSE
February 29, 2016
KEY RESERVOIR CHARACTERISTICS

The Reservoir Rock Contains a 3-D Network of Interconnected Pores which allows for to Storage and Transmission of Fluids.
The open space created between grains during deposition is referred to as the **void, or pore, space.**

- **Bulk Volume,** V_b
- **Pore (Void) Volume,** V_p

\[\phi = \frac{V_p}{V_b} \]

The bulk volume V_b and **the pore volume** V_p are defined as:

- $V_b = \text{Bulk Volume}$
- $V_p = \text{Pore (Void) Volume}$
KEY RESERVOIR CHARACTERISTICS

Permeability is defined based on an equation, developed by Henry Darcy:

\[
k = \frac{q \mu L}{A (p_1 - p_2)}
\]

- \(q\) = Flow Rate through the Porous Medium
- \(A\) = The Area across which the flow occurs
- \(\mu\) = Fluid Viscosity
- \(L\) = Length of the Medium.
KEY RESERVOIR CHARACTERISTICS

\[
q = \frac{k \mu L}{A \left(p_1 - p_2 \right)}
\]

1 darcy = 1000 md

One darcy is a relatively high permeability and **millidarcy** (md) is commonly used as the permeability unit.
Permeability Measurement

Gas Slippage

Low Pressure

High Pressure

Flow Direction

p_1 Upstream Pressure p_2 Downstream Pressure

Pressure Regulator Calibrated Orifice Sample Holder

$y = 6.6321x + 28.176$

$R^2 = 0.9632$
UNCONVENTIONAL RESERVOIRS

Unconventional

Conventional

1 nanodarcy 1 microdarcy 1 milidarcy 1 darcy

0.000001 0.00001 0.001 0.1

Pore Throat Sizes in Millimeters

Natural gas molecule
Crude oil molecule
Soap film
Human hair
Sheet of paper

The WVU Energy Institute | energy.wvu.edu
SHALE GAS RESERVOIRS

- Natural fractures (porosity 2)
- Matrix pores (porosity 1)
- Adsorbed gas on particle surface (porosity 3)

Symbols:
- Shale solid matrix
- Free gas
- Adsorbed gas

The WVU Energy Institute | energy.wvu.edu
Langmuir Isotherm

\[G_s = \frac{V_L p}{P_L + p} \]

- \(G_s \) = Gas Storage Capacity
- \(V_L \) = Langmuir Volume Constant
- \(P_L \) = Langmuir Pressure Constant
- \(p \) = Pressure, psia
MEASUREMENT OF SHALE PETROPHYSICAL PROPERTIES

Pore Volume
- Low-pressure gas pycnometry
- High-pressure mercury injection
- Low-temperature adsorption

Permeability
- GRI Method
- Pressure Pulse Decay

Pore Size Distribution
- MICP
- NMR
- SEM/STEM
- Low-temperature Adsorption

Adsorption
- Gravimetric
- Volumetric
Shale Permeability Measurement

- It is not practical to measure the permeability of shale by conventional (Steady-State) techniques because of low permeability.

- Unsteady-State Methods
 - GRI Method (Crushed Sample)
 - Pressure Pulse Decay
CRUSHED SAMPLE PERMEABILITY

Developed by Gas Research Institute and is referred to as "GRI" Method.

- No Standard Protocol
- Inconsistent Results

Particles in the 20-35 US mesh size range (0.85 to 0.5mm)
PRESSURE PLUS DECAY

- Different Interpretations
- Complex and Tedium Calculations
CHALLENGES

• Gas Slippage Correction

• Impact of Gas Adsorption

• Impact of Stress
PRECISION PETROPHYSICAL ANALYSIS LABORATORY (PPAL) AT WVU

MEASUREMENT CAPABILITIES

- **Permeability** (Nano-Darcy range).
- **Pore Volume** (0.1% accuracy).
- **Absolute Permeability** (Gas Pressure Correction).
- **Impact of Stress** (Reservoir Conditions).
- **Impact of Adsorption**
- **Pore Structure Characterization**

Accurate, Consistent, and Repeatable Results
Absolute Permeability

- **Traditional Klinkenberg Analysis**
 - Gas Slippage
 - Helium: \(y = 90090x - 66.106 \)
 - \(R^2 = 0.9865 \)
 - Nitrogen: \(y = 57377x + 11.06 \)
 - \(R^2 = 0.9992 \)

- **Modified Klinkenberg Analysis**
 - Gas Double Slippage
 - Helium: \(y = 8E+06x + 154.3 \)
 - \(R^2 = 0.9603 \)
 - Nitrogen: \(y = 5E+06x + 155.51 \)
 - \(R^2 = 0.9705 \)
Adsorption Isotherm

- **104 °F, TOC: 1.2% (Published Data)**
- **79 °F, TOC: 0.8% (PPAL)**
- **Crushed Sample (Commercial Lab)**
 - **169 °F, TOC: 0.8%**
IMPACT OF STRESS

- Porosity vs. Net Stress, psia
- Absolute Permeability vs. Net Stress, psia
- Permeability vs. Net Stress, psia
- Fracture Closure

\[\frac{k}{k_o}^{1/3} \]

\[\ln\left(\frac{p}{p_o}\right) \]
SEQUENTIAL STRESS

![Graphs showing permeability vs. net stress for Series 1 and Series 2. The graphs illustrate the decrease in permeability with increasing net stress.](image)
Adsorption Isotherms

- **Multilayer Adsorption**
- **Slit-like pores**

Nitrogen Adsorption at Low Temperature

Micromeritics ASAP 2020